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Abstract
Feature Selection (FS) methods alleviate key problems in classification procedures as they 
are used to improve classification accuracy, reduce data dimensionality, and remove irrel-
evant data. FS methods have received a great deal of attention from the text classification 
community. However, only a few literature surveys include them focusing on text classifi-
cation, and the ones available are either a superficial analysis or present a very small set of 
work in the subject. For this reason, we conducted a Systematic Literature Review (SLR) 
that asses 1376 unique papers from journals and conferences published in the past eight 
years (2013–2020). After abstract screening and full-text eligibility analysis, 175 studies 
were included in our SLR. Our contribution is twofold. We have considered several aspects 
of each proposed method and mapped them into a new categorization schema. Addition-
ally, we mapped the main characteristics of the experiments, identifying which datasets, 
languages, machine learning algorithms, and validation methods have been used to evalu-
ate new and existing techniques. By following the SLR protocol, we allow the replication 
of our revision process and minimize the chances of bias while classifying the included 
studies. By mapping issues and experiment settings, our SLR helps researchers to develop 
and position new studies with respect to the existing literature.
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1  Introduction

Automated text classifiers can be used to handle several real-world problems, such as spam 
filtering, sentiment analysis, and news classification. Texts are usually represented by a 
high-dimensional and sparse document-term matrix in a space having the dimensionality 
of the size of the vocabulary containing word frequency counts. The high dimensional-
ity can cause some problems, such as the curse of dimensionality and model overfitting. 
Feature Selection (FS) can be used to reduce dimensionality, remove irrelevant data, and 
increase the learning accuracy. FS is the process of automatically or manually select the 
features which contribute most to the classification of a given text. In text classification 
problems, the feature is usually some representation of a subset of words. A significant 
subset of features extracted from text corpora may not be relevant for the text classification 
task. These non-relevant features can either deteriorate the efficiency and accuracy of the 
classification models (Kumbhar and Mali 2013). For this reason, FS for text classification 
became a popular research topic in artificial intelligence and data mining conferences and 
journals.

Some general reviews about FS are available. Chandrashekar and Sahin (2014) and 
Kumar (2014) provide a general introduction to FS methods and classify them into the 
filter, wrapper, and embedded categories. Pereira et al. (2018) give a comprehensive survey 
and novel categorization of the FS techniques focusing on multi-label classification. How-
ever, these surveys did not consider in their analyses the different methods to handle the 
high dimensionality of the feature space, the different text representation formats such as 
bag of words and word embedding, and the power of the features’ semantics for choosing 
the most efficient set of features.

FS methods have received a great deal of attention from the text classification commu-
nity due to their strength in improving retrieval recall and computational efficiency (Kumb-
har and Mali 2013). However important, there are only a few literature surveys  (Kumb-
har and Mali 2013; Shah and Patel 2016; Deng et  al. 2019) that include them focusing 
on text classification. The ones available are either a superficial analysis or present a very 
small set of work in the subject. Kumbhar and Mali (2013) and Shah and Patel (2016) 
are more introductory studies, and both surveys don’t focus only on FS methods. Besides 
to FS, Kumbhar and Mali (2013) address feature extraction methods and Shah and Patel 
(2016) address algorithms for text classification. For the best of our knowledge, there is 
only one review work focused exclusively on FS for text classification (Deng et al. 2019). 
Although Deng et  al. (2019) provide a good overview of the subject, a limited propor-
tion of published papers about FS for text classification have been included (28 studies). 
Among these, only fourteen were published in the last ten years, and six were published 
in the last five years. Besides, no clear criteria for inclusion or exclusion of the selected 
articles were defined. The study selection was made from other FS reviews that are not 
specific to text classification.

Our literature review expands existing surveys on FS methods, including up-to-date 
researches and providing a thorough analysis of FS methods considering the text classifica-
tion task. The contribution of our literature survey lays on:

–	 Including a more significant number of papers covered (175 studies) resulting from a 
more comprehensive review in the theme;

–	 Bringing more up-to-date researches, including studies from 2013–2020;
–	 Proving a reproducible review according to an established literature review protocol;
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–	 Providing a new research categorization for understanding the FS methods area;
–	 Providing a description of the experimental settings carried by the 175 reviewed stud-

ies; and
–	 Last but not least, we classified all 175 papers retrieved in our study according to our 

categorization scheme.

This paper is organized as follows: Section  2 provides background information about 
the main elements for text classification, including FS. The protocol of our SLR, which 
includes the research questions and inclusion/exclusion criteria for selecting the studies 
from the literature, is detailed in Sect. 3. Section 4 summarizes the issues addressed in the 
included studies. In Sect. 5, we cover all of the included studies by organizing them into 
a new categorization scheme specific to FS methods for text classification. The catego-
rization schema proposed in this paper provides a simplified way to organize the actual 
methods as well as positioning new studies about FS for text categorization. The mapping 
of the included studies into this categorization schema allows us to identify which are the 
issues/topics that already have a significant amount of studies and which ones have been 
less explored (possibly research gaps). In Sect. 6, we survey the experiment settings used 
to evaluate the proposed methods. We believe that the mapping of existing studies and their 
experiment settings would help researchers to position and develop new studies about FS 
for text classification.

2 � Background

Text classification is the problem to determine which class(es) a given document belongs 
to (Manning et al. 2008). The classification problem can be divided into three main sub-
types: binary, multiclass and multilabel. If only two classes are predefined, the problem 
is called as a binary classification problem. If three or more classes are defined, and each 
document can only be associated with one of these classes, it is known as a multiclass clas-
sification problem. Finally, if each document can be simultaneously associated with two or 
more classes (or labels), it is defined as a multilabel classification problem.

Currently, developing models for text classification is a sophisticated process involv-
ing not only the training of models, but also numerous additional procedures, e.g., data 
pre-processing, transformation, and dimensionality reduction  (Mirończuk and Protasie-
wicz 2018). This background section presents the main concepts directly related to this 
review’s theme. Section 2.1 discusses distinct text representation models punctuating its 
advantages and disadvantages. Section 2.3 introduces the main concepts on FS specifically 
for text classification. Finally, Sect. 2.2 presents learning algorithms/architectures for text 
classification.

2.1 � Representation models for textual data

Once you have labeled documents, the first step to construct a classification model is to 
extract features from text corpus. Different models of feature representation and weighting 
can be used for text classification and each representation model has advantages and disad-
vantages that must be considered. Below, we present two groups of representation models 
that are widely used in text classification architectures: N-gram based Models and Word 
Embedding Models.
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N-gram is a set of N words which occurs “in that order” in a text set  (Kowsari et  al. 
2019). The simplest and most widely used N-gram model is the BoW in which the N = 1 
(called 1-gram or uni-gram model). In this model, each feature corresponds a unique 
word in the text. However, the N-gram model can also be applied with N values greater 
than 1. For example, in the 2-gram model each feature corresponds to two consecu-
tive words. N-gram models with N > 1 could detect more information in comparison to 
1-gram (Kowsari et al. 2019) because with N = 1 the word order information is disregarded 
while in 2-gram or higher models part of the word order information is captured.

In the N-gram model, each feature (a word or set of words) receives a value/weight for 
each document in the corpus. This value is usually calculated based on the frequency of 
that word (or set of words) in each document. The simplest is precisely the frequency of 
the word (or set of words) in the document, known as Term Frequency (TF). However, 
other weighting methods may be used. The most well-known and widely used method is 
the Term Frequency-Inverse Document Frequency (TF-IDF). In this method, the Inverse 
Document Frequency (IDF) is used in conjunction with TF in order to reduce the effect of 
implicitly common words in the corpus (Kowsari et al. 2019).

The N-gram model is usually chosen to represent text in machine learning activities 
due to its simplicity, robustness and the observation that simple models trained on huge 
amounts of data outperform complex systems trained on less data (Mikolov et al. 2013a). 
However, recall that N-gram models don’t measure the semantic similarity of the words 
becoming a limiting factor for some types of machine learning tasks  (Mikolov et  al. 
2013a). Thus, many researchers have been looking for representation models that capture 
the syntactic or semantic similarity of words (Mikolov et al. 2013a, b; Kowsari et al. 2019).

Unlike N-gram models that represent each word (or set of words) by a single value/
weight per document, word embedding models represent each word (or set of words) by a 
N-dimension vector of real numbers (Kowsari et al. 2019). The idea behind word embed-
ding models is that similar words have vectors with close values. In this way, the level 
of syntactic or semantic similarity between words can be measured based on the distance 
of their vectors. Different techniques for estimating word vectors have been proposed, as 
Word2Vec (Mikolov et al. 2013a), Glove (Pennington et al. 2014) and FastText (Bojanow-
ski et al. 2017).

2.2 � Text classification architectures

Over the years, different types of algorithms have been developed for the task of text clas-
sification  (Kowsari et  al. 2019). These algorithms can be divided into two main groups: 
traditional machine learning and deep learning. Some traditional algorithms, like Support 
Vector Machines (SVM), Naive Bayes (NB) and k-Nearest Neighbors (KNN), are widely 
studied for the text classification problem and are still commonly used by the scientific 
community (Kowsari et al. 2019). However, architectures based on deep learning like Con-
volutional Neural Network (CNN), Deep Belief Network (DBN), and Hierarchical Atten-
tion Network (HAN) are increasingly being researched for text classification  (Kowsari 
et  al. 2019). Despite having the potential to achieve excellent results in some situations, 
deep learning architectures have some limitations and disadvantages. Table  1 compares 
deep learning and traditional architecture for text classification.

Table 1 shows that each text classification architecture has advantages and disadvan-
tages. Thus, each specific situation must be analyzed before choosing between using 
deep learning or traditional architecture for text classification. Two central points in 
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this choice are data volume and the need to have model interpretability. Deep learning 
usually requires much more data than traditional machine learning algorithms and not 
facilitate a comprehensive theoretical understanding of learning (Kowsari et al. 2019). 
Therefore, if the volume of data available is small or there is a need for the interpret-
ability of the model, the traditional architecture will probably be more suitable.

2.3 � Feature selection for text classification

As shown in Sect. 2.1, the main representation models used for text classification result 
in high-dimensional vectors. High dimensionality can cause some problems, such as 
the curse of dimensionality and model overfitting. For this reason, many researchers 
use dimensionality reduction techniques to produce smaller feature spaces  (Kowsari 
et al. 2019). According to Mirończuk and Protasiewicz (2018), dimensionality reduc-
tion techniques can be organized into three groups: FS, feature projection, and instance 
selection. While the first two types of methods aim to reduce the dimensionality of the 
feature space, the third aims to reduce the number of instances used for training. In this 
section, we focus on FS and feature projection methods.

In FS methods, the resulting feature set is a subset of the initial feature set. On the 
other hand, the feature projection results in a new group of features mapped from the 
original features. Both methods can be used in isolation or combined to reduce dimen-
sionality. This systematic review focuses specifically on FS methods, so methods that 
perform feature projection are not in this study’s scope.

FS methods are usually classified into three categories: filter, wrapper, and embed-
ded (Kumar 2014). This categorization is based on the FS strategy regarding how the 
FS integrates into the learning activity. Filter methods are executed as a previous step 
and are independent of the learning activity. Wrapper methods, on the other hand, 
encapsulate the predictor (i.e., the classifier) and utilize the performance of the predic-
tor to assess the relevance of features or search for the most relevant subset of features. 
Finally, embedded methods include FS as part of the training process.

A relevant advantage of selecting features over projecting features is because the 
resulting feature set is a subset of the original features. In this way, each resulting fea-
ture preserves the same meaning as the original features. This is an important point for 
text classification, as each feature usually represents a word or set of words. According 
to the survey work carried out by Mirończuk and Protasiewicz (2018), FS is the most 
researched dimensionality reduction technique for text classification. In our SLR, we 
focus specifically on FS studies for text classification.

The FS activity, which is the focus of this review, can be useful in traditional archi-
tecture and deep learning for text classification. As traditional architecture is more 
dependent on feature engineering activities, the selection of features has an important 
role in improving the classification model’s accuracy. As the deep learning architecture 
has less dependence on feature engineering, FS tends to have less impact on the accu-
racy of the model. However, deep learning architectures are usually quite expensive to 
train. For this reason, FS may have an important utility for the deep learning architec-
ture to reduce the computational cost.
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3 � Systematic literature review

The purpose of our review is to collect, organize in categories, and provide a compre-
hensive and recent review of FS methods for text classification. We decided to conduct 
a SLR to use a reproducible methodology and define explicit eligibility criteria. We 
aim to minimize the review bias and attempt to identify all studies that are related to 
our research questions.

There are several guidelines available to conduct SLRs, being Cochrane reviews 
protocol one of the most common in the health domain (Higgins and Green 2008). 
Based on Cochrane reviews protocol and other methods available in the literature, 
Kitchenham (2004) proposed a protocol focused on software engineering. The SLR 
reported in this paper follows the Kitchenham’s procedures for SLR.

We have performed a SLR in three databases: (1)  IEEE Xplore Digital Library, 
(2) ACM Digital Library, and (3) Science Direct. Our SLR protocol includes the fol-
lowing steps: (i)  the elaboration of research questions; (ii)  the definition of search 
strategy; (iii) high-level paper selection and classification; and (iv) detailed review of 
selected papers. The searches were conducted using both title and abstract. It returned 
a total of 1376 unique papers from journals and conference considering the past eight 
years (2013–2020). After abstract screening and full-text eligibility analysis, 175 stud-
ies were included in our SLR.

3.1 � Research questions and search strategy

The purpose of this SLR is to find primary studies using an unbiased search strategy to 
answer the following research questions: 

1.	 What are the main issues/problems that are being addressed by FS studies in text cat-
egorization task?

2.	 What are the different categories of methods that have been proposed?
3.	 What are the settings used to analyze and compare FS methods in experiments from 

the text categorization domain? For example: Text representation, Datasets, classifier 
algorithms and validation settings.

Preliminary searches were performed to assess the volume of potentially relevant stud-
ies. We identified that the query returned a small number of studies when applied only 
to the studies’ title. Searches using full text returned an impractical volume of non-rel-
evant studies (dozens of thousands) because the searched terms are widespread in arti-
ficial intelligence literature. Therefore we decide to perform the search using title and 
abstract. Additionally, in our preliminary searches, we identified the words’ main vari-
ants on the concepts we are looking for. Based on that, we construct our query string:

(Feature OR Features OR Variable OR Variables OR Attribute OR Attributes) AND 
(Selection OR Select OR Selecting OR selected) AND (Text OR Texts OR Document 
OR Documents) AND (Categorization OR Classification OR Categorize OR Classify 
OR Categorizing OR Classifying OR Classifier)
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3.2 � Conducting the review

Study selection refers to the assessment of retrieved papers. For this, we defined inclu-
sion and exclusion criteria. The first exclusion criteria specified was based on practical 
issues  (i.e., language and date of publication). This SLR considered papers published 
in English and between the years 2013 and 2020. The year restriction was established 
considering a large number of included studies in this period. The study selection activ-
ity was executed in two steps: (1) title and abstract screening; and (2) full text screening. 
We performed both steps manually.

In the first screening phase, papers were included only if they contain, either in the 
title or in the abstract, descriptions related to Feature Selection and Classification Tasks 
topics in Text Domain.

After the first screening step, full texts were retrieved and analyzed individually. At 
this point, the aim was to ensure that only those studies that are related to the sub-
ject considered in this review and that are related to our research questions would be 
selected. The following are the main reasons for studies exclusion after the full-text 
analysis: (1) The study does not focus exclusively on FS  (70 studies). (2) The study 
does not evaluate the FS method using text datasets (33 studies). (3) The study does not 
evaluate the classification task’s method (6 studies).

The SLR reported in this paper was conducted in October 2020. Included papers 
reached the amount of 175 studies. Among these studies, 71  (40.57% of total) were 
retrieved from ACM Digital Library, 71  (40.57% of total) cames from IEEE Xplore 
Digital Library and 33  (18.86% of total) of them were retrieved from Science Direct. 
This list of papers includes journal articles and conference proceedings.

The research group that executed this SLR is composed of one D.Sc. candidate and 
two professors, all addressing Artificial Intelligence and Data Mining topics. Fig.  1 
shows the PRISMA flow diagram for this SLR. This diagram presents a systematic 
review’s main activities, indicating the number of studies evaluated at each stage. The 
PRISMA flow diagram was proposed by Moher et al. (2009) within a work that raised 
the preferred reporting items for systematic reviews and meta-analyses, the PRISMA 
statement.

Fig. 1   PRISMA flow diagram for this systematic literature review (SLR)
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4 � Feature selection issues for text classification

We read and analyzed all included studies to identify the main issues that are being 
addressed by them (Research Question 1). After analyzing each study, we identified the 
main groups of problems/issues and mapped the included studies to these groups. We 
found that these groups of problems represent sub-tasks of the FS process (Fig. 2). They 
are related to each other and can be organized as: 

1.	 Measure feature relevance – Measure the relevance of each feature is an essential task 
in FS activity. There are different ways to estimate the relevance of features, such as 
measuring the correlation with the target, the variable entropy, or calculating the redun-
dancy of features (Kumar 2014). However, the basic idea is that the higher the relevance 
of a feature, the greater must be the power to increase the accuracy of the model (in our 
case, a text classifier). These studies compare existing metrics or define new metrics for 
calculating the predictive potential of each feature. The large part of the studies included 
in this review deal with issues related to the task of measure feature relevance.

2.	 Subset search – The subset search task aims to find the best subgroup of features to be 
used in the classification. We found two main ways to perform this search: (a) evaluat-
ing several different subsets directly in the classification activity (wrapper method), 
and (b) using some heuristics to assess the relevance of each subset without evaluating 
in a specific classifier (filter method). In both approaches, optimization methods (such 
as genetic algorithms or Particle Swarm Optimization (PSO)) can be used to help the 
search. Subset search methods commonly use as its basis some of the existing feature 
relevance metrics (such as Chi-square (CHI), Information Gain (IG), or Mutual Informa-
tion (MI)).

3.	 Globalization – Relevance metrics and subset search methods commonly can be applied 
specifically for one class or label of the dataset. Therefore, a method that globalizes the 
results of each class/label is required to construct a final set of features that represents 
all classes or labels. One alternative to globalization is to use specific sets of features for 

Fig. 2   The four FS sub-tasks for text classification



	 J. T. Pintas et al.

1 3

each class/label. However, the classifier must be designed to work this way. We mapped 
studies about class/label specific features in the globalization category in this review.

4.	 Ensemble – Each FS method has specific advantages and disadvantages, so combining 
two or more methods can lead to better results than using them separately. Ensemble 
studies propose or evaluate approaches to combining FS methods and/or metrics.

Sections 4.1–4.4 discuss the most relevant issues and studies for each task and present an 
overview of the main approaches we found to deal with each presented issue. The methods 
proposed in the included studies will be described in Sect. 5.

Fig.  3 presents the evolution of the number of studies by the issue group. This chart 
shows an increasing number of papers that address the subset search problem while a 
decreasing number of studies that focus on how to measure the relevance of features. Since 
the studies search for this review happened in October 2020, the numbers of papers for the 
2020 are still partial because the source databases were still incomplete for those dates. 
Therefore, we mark this part of the graph in gray to show that it includes preliminary data.

4.1 � Issues about measure feature relevance

After analyzing included papers that deal with the task of measure feature relevance, we 
mapped the most frequent issues related to this task:

–	 How to deal with the unbalanced or skewed datasets?
–	 How to avoid that rare terms receive high scores?
–	 How to identify and measure the redundancy of terms?
–	 How to consider the sparsity of the matrix?
–	 How to consider the position of terms?
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Fig. 3   Amount of studies by FS issue group over the years. The gray box indicates that data collected for 
2020 may be preliminary since this review was updated in October 2020
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Each one of these issues is explained next.
Unbalanced or Skewed DatasetsFor text classification, data are characterized by a 

large number of highly sparse terms and highly skewed categories (Rehman et al. 2018). 
A skewed dataset has an unbalanced class distribution, which means the number of 
instances in one class (majority class(es)) may be many times bigger than the number of 
other class instances (minority class(es)) (Japkowicz 2000). If the unbalance of classes 
is not treated during or before the FS, the positive features of the minority classes may 
receive minor relevance scores because they are present in a smaller number of docu-
ments. Consequently, the minority classes may have no features on the selected feature 
set. If some class/label does not have any of its features included in the final set, the 
classifier may not be able to classify the documents of this class/label.

Rare Terms/FeaturesSeveral relevance metrics are based on the correlation between 
features and the target. In these metrics, features with high correlation receive higher 
scores. Because rare terms tend to be present in a few or only one class, they tend to 
have a higher correlation with the target. For this reason, many of the relevance metrics 
assign higher scores for rare features. As an example, we can cite Balanced Accuracy 
Measure (ACC2) and IG (Rehman et al. 2017; Wang et al. 2014a). However, rare fea-
tures usually are not relevant to classification tasks, because they will have a very low 
likelihood of to be present in new documents.

We found two main strategies to deal with rare terms in included studies: (1) elimi-
nating rare terms before applying the FS method; and (2)  adapt the relevance metric 
formula to assign lower scores to rare terms.

Redundancy ExclusionFeature redundancy is usually defined as a high correlation 
among features (Wang et al. 2013). Redundant features are likely to appear simultane-
ously in the same documents. Considering that two features are redundant and one of 
them is already selected, select the second feature will contribute very little or nothing 
to the total relevance of the selected set. For this reason, the redundancy between fea-
tures is an important factor to measure the relevance of each feature. The goal of FS is 
to select a highly-relevant subset with a minimum redundancy (Labani et al. 2018).

Like the case of dealing with rare features, we found two main approaches that deal 
with redundant features: (1)  eliminating redundant features during the pre-processing 
phase before applying the FS method; and (2)  adapt the relevance metric formula to 
assign lower scores to redundant features.

Data SparsityFor text classification, features usually consider in its recipe the fre-
quency of words/phrases in each document. The number of possible words/phrases in all 
dataset training documents can be huge, and this number defines the length of the initial 
feature vector (Ong et al. 2015). Since each document usually includes a low percentage 
of the total set of words/phrases, most of the features of each document will be zero, 
i.e., zero frequency for words/phrases that are not present in that document.The result is 
a sparse composite matrix.

The matrix sparsity degrades the performance of the text classification  (Ong et  al. 
2015). For this reason, properly handling the sparsity issue is recommended for FS 
methods. An alternative to address this issue is to use another representation format 
which does not result in a sparse matrix.

Position/Location Inside the TextThe term location inside a text can be related to 
the importance of a term and, consequently, for measuring the relevance of a feature. 
Song et  al. (2016) defines that the feature words have different capabilities to express 
the text in different positions of the text. Especially for news articles, information that is 
in the title, subtitle, or first paragraph tends to be more relevant than information on the 
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other paragraphs. Therefore, the location of terms within the text can be useful for FS 
methods.

4.2 � Issues about subset search

The subset search task aims to find the best subgroup of features to be used in the clas-
sification. This search can be performed using an optimization method  (such as genetic 
algorithms or PSO) and evaluating several different subsets directly in the classification 
activity (wrapper method) or using some heuristics to evaluate the relevance of each subset 
without evaluating in a specific classifier  (filter method). Most subset search studies are 
focused on evaluating metaheuristics methods to improve search efficiency. Other studies 
focus on reducing redundancy and hyperparameter optimization.

Search Strategy/Search Efficiency and EffectivenessThe simplest way to perform the 
subset search is exhaustively to evaluate all candidate subsets according to some evaluation 
function. However, for a dataset with N features, there exists 2N candidate subsets. Due to a 
large number of features in text domain datasets, the exhaustive search usually is too costly 
and virtually prohibitive (Tang et al. 2014). For this reason, the main issue of the subset 
search for text classification is the search efficiency. Several studies included in this review 
proposes different metaheuristics or methods to perform the search efficiently.

Most of the included studies about subset searches are based on swarm optimiza-
tion methods. In those methods, subsets of candidate features are mapped as particles, 
and the Swarm Optimization method tries to find the best solution  (best feature subset) 
by exploring the search space moving the particles to find the global optimum configura-
tion (Chopard and Tomassini 2018).

RedundancyFeature redundancy is usually defined in terms of some correlations within 
the features (Wang et al. 2013). The goal of FS is to select a highly-relevant subset with 
a minimum redundancy  (Labani et  al. 2018). Most subset search methods avoid select 
redundant features naturally by evaluating several combinations of features. As explained 
in Sect. 4.1, methods that measure the relevance of each feature in isolation need address 
feature redundancy explicitly.

Feature Selection and Hyperparameter OptimizationClassification algorithms usually 
have several parameters whose values heavily influence its performance. Thus, determining 
appropriate values of parameters of a classifier is a critical issue (Ekbal and Saha 2015). 
Like FS, finding the best combination of parameters can be addressed as an optimization 
problem, called Hyperparameter Optimization. Grid search and manual search are the most 
widely used strategies for hyperparameter optimization (Bergstra and Bengio 2013).

Subset search methods usually are wrapper methods. That is, they use the accuracy of 
the classifier to evaluate each candidate subset. But notice that the predictor parameters 
influence the performance of the subset search. Similarly, the selected features influence 
hyperparameter optimization. For this reason, performing the two searches in an integrated 
manner may be a good approach to find the best combination of selected features and pre-
dictor parameters.

4.3 � Issues about globalization

Relevance metrics and subset search methods commonly can be explicitly applied for one 
class or label of the dataset. Therefore, a method that globalizes the results of each class/
label is required in order to construct a final set of features that represents all classes or 
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labels. One alternative to globalization is to use specific sets of features for each class/
label. Studies about class/label specific features are mapped in the globalization category 
in this review.

Analyzing included studies, we found three ways to implement FS globalization within 
a text classification architecture: 

1.	 Implement a local FS method for each class/label and perform the globalization subse-
quently.

2.	 Implement a global FS method designed to deal with globalization problems.
3.	 Adapt/Use a class/label specific classification scheme (selecting specific features for 

each class/label).

For the first three approaches, the main issue to be addressed is the representativeness of 
each class and label in the selected final set of features. For the fourth approach, the main 
question is how to transform the classifier or transform the problem to be able to use spe-
cific subsets of features per class/label. These globalization issues will be detailed in the 
following two paragraphs.

Classes/Labels Representativeness on Final Feature SetThe basic scheme of filter-based 
FS assigns a score to each feature based on its discriminating power. It selects the top-
k features from the feature set, where k is an empirically determined number  (Agnihotri 
et al. 2017b). If the classification problem is multiclass or multi-label, some classes/labels 
may have few or no selected features in the final feature set. Therefore, a central issue for 
globalization is ensuring adequate representativity for all classes/labels in the final dataset.

Class/Label Specific FeaturesInstead of performing the globalization and obtaining a 
single subset of features to be used in the classifier, it is possible to use subsets of specific 
features for each class or label. Some studies show this approach can improve the clas-
sification performance  (Tang et  al. 2016c, a). However, the classical theory as it stands 
requires operating in a common feature space and fails to provide any guidance for a suit-
able class-specific architecture (Baggenstoss 2003). Therefore, when using class/label spe-
cific features, the central issue is how to adapt the problem or the classifier to work with 
these class/label specific features.

In addition to the globalization approaches we identified in our systematic review, other 
approaches that address the globalization issue: 

1.	 FS based on sparse learning, which focuses on the relationship between features and 
classes or labels (Braytee et al. 2017).

2.	 FS based on manifold learning (Xu et al. 2010).

4.4 � Issues about ensemble

Each FS method has specific advantages and disadvantages, so combining two or more 
methods can lead to better results than using them separately. Ensemble studies propose 
or evaluate approaches by combining FS methods or metrics. We found that only seven of 
the included studies address the issue of ensembling FS methods. Another included studies 
deal with the FS methods specifically for ensembling learning approaches  (for example, 
Boosting-based algorithms  (Al-Salemi et  al. 2018)), but they are not focused on ensem-
bling FS methods. Virtually all of the included studies about the ensemble issue address 
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the same central problem of how to combine and aggregate the results of different FS 
methods. We found three main approaches to ensemble FS methods: 

1.	 Combining selected subsets – Execute/Performs two or more FS methods isolated and 
then create a final set of features by combining the subsets selected by the different 
methods.

2.	 Chaining FS methods – Execute two or more FS methods in sequence, where the subset 
selected by a method becomes the input for the next method.

3.	 Ensembling rankings – Construct two or more relevance rankings (using different rel-
evance metrics), combining the resulting rankings into a unique ranking and finally 
select the features using a predetermined threshold.

For each approach, different ways of combining or rankings the sets are available. The 
main issue of the included studies is precisely to define/find the best way to perform this 
combination to obtain the most relevant subset of features.

5 � Feature selection methods for text classification

As explained in Sect. 4, FS for text classification should address different issues. Our SLR 
found that several types of methods are being proposed and evaluated to address such 
issues. We analyzed all the included studies of our SLR and mapped the main characteris-
tics of each method. Based on this mapping, we designed a new categorization scheme that 
allows to group the methods from four different perspectives (Research Question 2): strat-
egy, approach, target, and labeled data dependence (Fig. 4). The proposed categorization 
scheme helps to organize in groups and compare current methods. Additionally, it will help 
the positioning of future studies about FS for text classification.

The first perspective addresses the different strategies as the selection of features can be 
performed. It is detailed in Sect. 5.1. The different approaches (statistical, machine learn-
ing, or semantical) are mapped on the second perspective and is detailed in Sect. 5.2. The 
third perspective maps the type of target that the method was built to handle (binary, multi-
class, multi-label, hierarchical, or ordinal). It is explained in Sect. 5.3. The fourth perspec-
tive maps the level of dependence on labeled data, being detailed in Sect. 5.4.

Each perspective is composed of a set of categories, as shown in Fig. 4. We mapped 
each of the studies included in this review according to each of these four perspectives 
of the classification schema applied on the methods described by them.Table 2 maps the 
issues groups described in Sect. 4 into each perspective of our categorization schema pre-
sented in this section. This table can be used to identify which strategies and approaches 
are being used to address each issue group. The most relevant studies on each category will 
be indicated during the explanation of the perspectives and respective categories in the fol-
lowing sections.

5.1 � Categorization by strategy

As presented in Sect. 2.3, FS methods are usually classified into three categories: filter, 
wrapper, and embedded. The first three flows in Fig. 5 represents each one of these strat-
egies. In this SLR, we have included two more categories to the three classical ones: 
Two-stages Pure and Two-stages Hybrid. Note that both strategies have the same flow in 
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Fig. 5. The difference is in the choice to combine the same or different strategies. Two-
stages Hybrid strategy methods combine FS methods are based on different strategies 
of selection. For example, the first stage may apply the filter strategy, while the second 
stage may use the wrapper strategy. On the other hand, some studies combine two dif-
ferent methods but using the same strategy. For these cases, we classify the studies in a 
separate category (Two-stages Pure strategy). Each one of the five strategies considered 
in this survey will be presented next. Fig. 6 summarizes the amount of included studies 
by strategy over the years.

Filter StrategyThe main characteristic of the methods that are based on the filter 
strategy is to be independent of the classifier. In other words, the filter strategy does 
not use the performance of the classifier to assess the relevance of features or subsets of 
features. Lazar et al. (2012) subdivided these filter methods into two classes: ranking-
based and space search. Ranking-based methods use some relevance metric to assess 
the predictive power of each feature, construct a ranking based on this relevance score, 
and apply a threshold to select the most relevant features  (Chandrashekar and Sahin 
2014). Space search methods aim to find the best subset of features by evaluating differ-
ent combinations of features.

Fig. 4   Proposed categorization schema for FS methods for text classification. Each vertical represents a dif-
ferent categorization perspective. We used this categorization scheme to map and analyze the 175 FS meth-
ods included in this review
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Table 3 summarizes studies that apply a ranking-based approach to implement the fil-
ter strategy. The studies in this table are grouped according to the base method employed 
to handle the problem of measuring the relevance. We found that these studies usually 

Table 2   Amount of FS studies for text classification by issue group and categorized according to the pro-
posed categorization schema. All included studies were published between January/2013 and October/2020. 
Note: We use some abbreviations to simplify this table. TS refers to Two-Stages, and ML refers to Machine 
Learning

Issue group Strategy Approach Target Labeled data dependence

Measure
Relevance
(84 Studies)

Filter (77)
TS Pure (6)
Embedded (1)

Statistic-based (63)
Semantic-based (9)
ML (7)
Linguistics (3)
Rule-based (2)

Multiclass (59)
Binary (19)
Hierarchical (3)
Ordinal (2)
Multi-label (1)

Supervised (77)
Semi-superv. (4)
Unsupervised (3)

Subset
Search
(68 Studies)

Wrapper (22)
Filter (21)
TS Hybrid (16)
Embedded (5)
TS Pure (4)

Metaheuristic (30)
Statistic-based (25)
ML (10)
Semantic-based (2)
Rule-based (1)

Multiclass (43)
Binary (19)
Multi-label (6)

Supervised (66)
Semi-superv. (1)
Unsupervised (1)

Globalization
(16 Studies)

Filter (14)
Embedded (1)
Wrapper (1)

Statistic-based (16) Multiclass (14)
Multi-label (2)

Supervised (16)

Ensemble
(7 Studies)

Filter (5)
TS Hybrid (1)
Wrapper (1)

Statistic-based (5)
Metaheuristic (1)
Rule-based (1)

Binary (5)
Multiclass (2)

Supervised (7)

Total
(175 Studies)

Filter (117)
Wrapper (24)
TS Hybrid (17)
TS Pure (10)
Embedded (7)

Statistic-based (109)
Metaheuristic (31)
ML (17)
Semantic-based (11)
Rule-based (4)
Linguistics (3)

Multiclass (118)
Binary (43)
Multi-label (9)
Hierarchical (3)
Ordinal (2)

Supervised (166)
Semi-superv. (5)
Unsupervised (4)

Fig. 5   Flow diagram for each Feature Selection (FS) Strategy presenting the interaction between the FS 
activity and the model training activity. Each of these strategies is detailed in Sect. 5.1
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propose an improved version of some existing relevance metrics or propose new relevance 
metrics. As detailed in Sect.  3, our systematic review focused on mapping studies pub-
lished between 2013 and 2020. However, some studies published before this time window 
have proven themselves in the literature. For example, the Distinguishing Feature Selector 
( DFS∗ ) method proposed by Uysal and Gunal (2012).

However, filter methods are not restricted to handle the problem of measure rele-
vance (ranking methods). The filter strategy can also be used to handle the subset search, 
globalization, or ensemble problems. Table 4 presents the filter methods that address each 
of these issues. In Table  4, the studies are also grouped according to the base method 
utilized.

As described in Sect. 4.1, one of the most relevant issues for text classification is data 
sparsity. The FS methods generally help to reduce data sparsity by removing less relevant 
features. However, we found one study based on the filter strategy that mainly focuses on 
dealing with this issue. Ong et al. (2015) propose an improved FS metric known as Spar-
sity Adjusted Information Gain (SAIG), which modifies the conventional IG metric and 
aims to adjust the feature ranking scores according to the matrix sparsity.

Additionally, some two-stage FS methods perform the filter strategy in both stages (Two-
stages Pure Strategy). Despite having two stages, these methods cannot be classified as 
having a hybrid strategy because they only use one strategy  (the filter strategy). As an 
example, we can cite the study of Karabulut (2013) that presents a novel two-stage filter 
method based on IG theory and Geometric Particle Swarm Optimization (GPSO).

Wrapper StrategyDifferent from the filter strategy, the methods that use the wrapper 
strategy are dependent on the predictor because they use the performance of the predic-
tor to evaluate the relevance of features or search for the best subset of features. For this 
reason, wrapper methods tend to be more computationally costly than filter methods. Most 
wrapper methods are based on search techniques. As explained in Sect. 4.2, the exhaus-
tive search usually is too costly and most times prohibitive  (Tang et  al. 2014). For this 
reason, the main issue related to wrapper methods is the search efficiency  (explained in 
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Fig. 6   Amount of FS studies by strategy over the years. The gray box indicates that data collected for 2020 
may be preliminary since this review was updated in October 2020
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Table 3   Filter methods for measure relevance

Base method Studies

Accuracy Measure (ACC) Rehman et al. (2017, 2018)
Chi-square (CHI) Fukumoto and Suzuki (2015), Agnihotri et al. (2016), 

Bahassine et al. (2016), Sun et al. (2017), Bahassine 
et al. (2018)

Class Discriminating Measure (CDM) Ghareb et al. (2018)
Cluster-based Yang et al. (2014), Sheydaei et al. (2015), Nam and 

Quoc (2016), Malji and Sakhare (2017), Chor-
munge and Jena (2018), Guru et al. (2020)

Comprehensively Measure Feature Selection 
(CMFS)

Feng et al. (2015b), Zhou et al. (2016)

Crowd-based Feature Selection (CrowdFS) Pintas et al. (2017)
Discriminative Features Selection (DFS) Zong et al. (2015)
Document Frequency (DF) Chen et al. (2014), Li et al. (2014), Wang et al. 

(2014c), Li et al. (2015), Li (2016a, 2016b), Sarhan 
et al. (2016), Zhen et al. (2016), Zhou et al. (2018)

Entropy Mladenović et al. (2016), Wu et al. (2016)
Gini Index (GI) Chen et al. (2014), Wu et al. (2017), Ortega-Mendoza 

et al. (2018)
Information Gain (IG) Chen et al. (2013), Patil and Atique (2013), Zhang 

et al. (2013), Gao et al. (2014), Jiang and Yu 
(2015), Ong et al. (2015), Wu and Xu (2016), Zhu 
et al. (2017), Rastogi (2018)

Latent Dirichlet Allocation (LDA) Al-Salemi et al. (2017), Zhuang et al. (2017)
Matrix Liang et al. (2015), Wang et al. (2016)
Mutual Information (MI) Bagheri et al. (2013), Chen et al. (2013), Jiang and 

Jin (2013), Xiaoming and Tang (2013), Gunduz and 
Cataltepe (2015), Lifang et al. (2017)

Ontology-based Qazi and Goudar (2018)
Part of Speech Filter (POSFilter) Jiang and Yu (2015), Qin et al. (2016)
Postion-based Song et al. (2016)
Relative Discrimination Criterion (RDC) Rehman et al. (2015), Labani et al. (2018)
Rule-based Sheydaei et al. (2015), Agnihotri et al. (2016), Ouhbi 

et al. (2016)
Student’s t-Test Pramokchon and Piamsa-Nga (2014), Wang et al. 

(2014a)
Term Frequency-Inverse Document Frequency 

(TF-IDF)
Li and Li (2015), Guru et al. (2018)

Word Embedding Rui et al. (2016), Zhu et al. (2017), Tian et al. (2018), 
Lan et al. (2020)

Other Methods Baccianella et al. (2013), Hagenau et al. (2013), 
Li et al. (2013a, 2013b), Ren et al. (2013), Wang 
et al. (2013), Baccianella et al. (2014), Badawi and 
Altincay (2014), Wang et al. (2014c), Yang et al. 
(2015), Han et al. (2016), Parlar et al. (2016), Roul 
et al. (2016a), Tommasel (2016), Tutkan et al. 
(2016), Wang et al. (2017a, 2017b), Manochandar 
and Punniyamoorthy (2018), Méndez et al. (2019), 
Islam et al. (2019), Kim and Zzang (2018), Wang 
and Hong (2019)
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Sect.  4.2). Several studies included in this review propose different methods to improve 
search efficiency using metaheuristic search methods. Therefore, we identified that the 
wrapper strategy is commonly implemented with a metaheuristic approach. Section  5.2 
details the metaheuristic approach and lists the included studies based on this approach. 
Wrapper methods usually are subset search methods. That is, they use the accuracy of the 
classifier to evaluate each candidate subset. Therefore, the predictor parameters influence 
the subset search performance. Similarly, the features selected influence hyperparameter 
optimization. For this reason, wrapper methods perform the two searches  (subset search 
and hyperparameter search) in an integrated manner can be the best approach to find the 
best combination of selected features and predictor parameters. Despite the relevance of 
this issue, the only study included addressing it was developed by Ekbal and Saha (2015).

Embedded StrategyThe main characteristic of embedded methods is the incorporation 
of the FS as part of the training process. Embedded methods aim to reduce the computation 
time taken up for reclassifying different subsets, which is done in wrapper methods (Chan-
drashekar and Sahin 2014). The embedded methods include studies that are evaluated in 
specific/atypical learning situations:

–	 Aspect-based Sentiment Analysis—Zainuddin et al. (2018).
–	 Class-specific Features—Tang et al. (2016c).
–	 Ensemble of Multi-label Classifiers—Guo et al. (2017).
–	 Multi-objective Genetic-Programming—Nag and Pal (2016).
–	 Positive and Unlabeled Learning—Zhang et al. (2014b).

Our review found that most embedded strategy studies (5 of 7) focus on the subset search 
issue described in Sect. 4. As embedded FS methods are part of the training algorithm, this 
strategy can deal efficiently with the subset search issue (Nag and Pal 2016). Additionally, 
we identified one embedded strategy study focused on the measure relevance issue (Naik 
and Rangwala 2016) and another one focused on the globalization issue by implementing 
class-specific features (Tang et al. 2016c). None of the embedded strategy studies in this 
review focus on FS ensemble issue.

Two-stages Hybrid Strategy Each of the strategies presented until now (filter, wrapper, 
and embedded) has specific advantages and disadvantages. For this reason, many studies 
explore hybrid methods that combine two different strategies into a single method. In this 
way, it is possible to combine their advantages and mitigate specific problems/risks. Sev-
eral studies perform a filter stage before conduct the subset search to reduce the search 
space. For example:

–	 Filter Stage + Genetic Algorithm Based Search—Ghareb et al. (2016).
–	 Filter Stage (IG or CHI) + Rough Set—Kun and Lei (2014).
–	 Filter Stage + Markov Blanket Filter (MBF) Subset Search—Javed et al. (2015).
–	 Filter Stage + Support Vector Machine-Recursive Feature Elimination (SVM-RFE)—

Zhang et al. (2014a).
–	 Filter Stage (CHI) + Support Vector Machine-Recursive Feature Elimination (SVM-

RFE)—Chen et al. (2019).
–	 Filter Stage (CHI) + Particle Swarm Optimization (PSO)—Somantri et al. (2019).
–	 Filter Stage (MI) + Recursive Feature Elimination (RFE)—Jie and Keping (2019).
–	 Filter Stage (IG) + Particle Swarm Optimization (PSO)—Bai et al. (2018).
–	 Filter Stage (IG) + Binary Gravitational Search Algorithm (BGSA)—Kermani et  al. 

(2019).
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–	 Filter Stage (IG) + Improved Sine Cosine Algorithm (ISCA)—Belazzoug et al. (2020).
–	 Filter Stage (Ontology Filter) + Particle Swarm Optimization (PSO)—Abdollahi et al. 

(2019).

Two-stages Pure Strategy Some studies combine two different methods but using the same 
strategy. For this reason, they cannot be classified as hybrid strategy methods. Therefore, 
we classify them into a different strategy (Two-stages Pure). The following studies com-
bine two stages based on filter strategy or based on wrapper strategy:

–	 Filter (IG or CHI or MI) + Filter (Clustering)—Ghareb et al. (2016).
–	 Li et al. (2013b) propose a two-step FS method. At the first step, redundancy analysis 

among original features based on a categorical fuzzy correlation degree is applied to 
filter the redundant features with a similar categorical term frequency distribution. In 
the second step, a conventional IG feature relevance metric is adopted to select the final 
feature set.

–	 Wrapper (Forward Feature Construction) + Wrapper (Genetic Algorithm)—Rasool 
et al. (2020).

5.2 � Categorization by approach

During the review, we identified that FS works could be grouped according to the approach 
used. In this paper, the approach is related to the computational, statistical, or semantic 
technique used to select features. While the strategy (Sect.  5.1) defines how the method 
will fit into the training process and how it relates to the classifier, the approach (presented 
in this section) concerns the technique employed to perform the selection of features.We 
decided to map each method based on their primary approach since we identified that most 
methods do some combination of approaches, mainly with the statistic-based approach. For 
this reason, we did not map them into a separate category (hybrid approach).

Most published studies  (109 of 175, 62.29%) use statistical metrics to measure the 
relevance of features and select them. These methods will be classified as statistic-based 
approaches. However, other studies use different approaches to select features. The main 
groups of approaches we have found were machine-learning-based techniques  (such as 
clustering), semantic-based techniques, and rule-based techniques (such as Apriori). Each 
of these approaches will be detailed below.

Statistic-Based Approaches Gunduz and Cataltepe (2015) propose a feature relevance 
metric called Balanced Mutual Information (BMI) that is able to deal with the class imbal-
ance problem through oversampling of the minority classes. They use the Synthetic Minor-
ity Oversampling Technique (SMOTE) for oversampling, which creates new minority 
class instances by searching for nearest neighbors of a randomly selected minority class 
instance. The new minority class instance value is generated by interpolation of randomly 
selected instances and selected neighbors of this instance. Rehman et al. (2018) propose 
a new feature relevance metric called Max-Min Ratio (MMR). It is a product of max-min 
ratios of true positives and false positives and their difference, which allows MMR to select 
smaller subsets of more relevant terms even in the presence of highly skewed classes.

As discussed in Sect.  4.1, there are two main strategies to deals with rare terms: 
(1) eliminate rare terms during the pre-processing phase before applying the FS method, 
and (2) adapt the relevance metric formula to assign lower scores to rare terms. Rehman 
et al. (2015) adopt the first strategy explicitly by removing rare features before evaluating 



	 J. T. Pintas et al.

1 3

the proposed relevance metric called Relative Discrimination Criterion (RDC). Rehman 
et al. (2017) adopt the second strategy in a recent study. They propose the Normalized Dif-
ference Measure (NDM) that is an improved version of the ACC2 (Forman 2004) modified 
specially to assign lower relevance scores to rare features.

Labani et al. (2018) demonstrated that RDC is an effective method for identifying rele-
vant features. A drawback is that the correlation between features is ignored, and thus RDC 
cannot identify redundant features. In order to mitigate this problem, Labani et al. (2018) 
propose the Multivariate Relative Discrimination Criterion (MRDC) that is an evolution 
of the RDC. Labani et al. (2018) modified the original formula to identify and measure the 
redundancy of features based on the correlation between then. As a result, MRDC assigns 
a higher relevance score to features with high discriminative power and low redundancy.

Document Frequency (DF) of a feature refers to the number of documents that include 
that feature. The term frequency refers to the occurrence number of a certain feature in a 
certain document. Most popular FS metrics for text classification such as IG, CHI, and 
Odds Ratio (OR), are based on DF and don’t use the term frequency  (Baccianella et  al. 
2013). However, the term frequency is a piece of important information for FS because it 
represents the importance of feature to each document (Wu and Xu 2016). High-Frequency 
terms (except stop words) that occurred in few documents are often regards as discrimina-
tors in the real-life corpus (Wang et al. 2014a).

To overcome this drawback, Baccianella et al. (2013) propose to logically break down 
each training document of length k into k training “micro-documents”, each consisting of a 
single word occurrence and endowed with the same class information of the original train-
ing document. This transformation has the double effect of  (a) allowing all the original 
FS methods based on binary information to be still straightforwardly applicable, and  (b) 
making them sensitive to term frequency information. Wang et al. (2014a) propose a new 
FS metric based on term frequency and Student’s t-Test. The T-TEST function is used to 
measure the diversity of the distributions of a term frequency between the specific category 
and the entire corpus. Wu and Xu (2016) propose a new FS metric that combines DF and 
term frequency called Limiting DF’s Word Frequency. Its primary principle is summarized 
as follows: pre-set the threshold value of minimum DF � and the threshold value of maxi-
mum DF � , if the DF of feature word is between � and � then calculate the word frequency 
of this feature word or delete it otherwise.

Metaheuristic Approaches As explained in Sect. 5.1, metaheuristic search methods can 
be implemented to address the subset search issue and usually is combined with wrap-
per strategy. Metaheuristic algorithms use problem-specific heuristic information and effi-
ciently manage the search process without exploring the whole search space (Gökalp et al. 
2020). Therefore, they are ideal candidates to overcome the drawbacks of wrapper-based 
methods (Gökalp et al. 2020). Common meta-heuristic algorithms include the genetic algo-
rithm and PSO  (Lin et  al. 2016). The included studies that implement the metaheuristic 
approach is listed below:

–	 Binary Black Hole Algorithm (BBHA)—Pashaei and Aydin (2017).
–	 Binary Particle Swarm Optimization (BPSO)—Shang et al. (2016).
–	 Cat Swarm Optimization (CSO)—Lin et al. (2016).
–	 Genetic Algorithm and Wrapper Approaches (GAWA)—Rasool et al. (2020).
–	 Improved Particle Swarm Optimization (IPSO)—Lu et al. (2015).
–	 Multi-Objective Automated Negotiation based Online Feature Selection 

(MOANOFS)—BenSaid and Alimi (2021).
–	 Multi-Objective Relative Discriminative Criterion (MORDC)—Labani et al. (2020).
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–	 Memetic Feature Selection based on Label Frequency Difference (MFSLFD)—Lee 
et al. (2019).

–	 Optimized Swarm Search-based Feature Selection (OS-FS)—Fong et al. (2016).
–	 Small World Algorithm (SWA)—Lu and Chen (2017).
–	 Wrapper Feature Selection Algorithm based on Iterated Greedy (WFSAIG)—Kyaw 

and Limsiroratana (2019).
–	 Wolf Intelligence Based Optimization of Multi-Dimensional Feature Selection 

Approach (WI-OMFS)—Gökalp et al. (2020).

Machine Learning-Based ApproachesAmong the included studies, 17 studies use some 
machine learning methods directly in the FS process. These studies mainly used the fol-
lowing techniques:

–	 Clustering—Song et  al. (2013), Yang et  al. (2014), Zhou et  al. (2014), Sheydaei 
et al. (2015), Nam and Quoc (2016), Roul et al. (2016b), Malji and Sakhare (2017), 
Chormunge and Jena (2018), Kumar and Harish (2018), Guru et al. (2020).

–	 SVM—Rzeniewicz and Szymanski (2013), Zhang et  al. (2014a), Tripathy et  al. 
(2017).

–	 Word Embedding—Yang and Zheng (2016), Lampos et al. (2017), Tian et al. (2018), 
Lan et al. (2020).

Semantic-Based ApproachesEvaluate the meaning of words can be useful for FS methods 
because it helps to identify the relevance of words inside a text and identify the similar-
ity between words. Among the studies included, only 11 studies use a semantic approach. 
Below are the semantic technologies used by each study:

–	 Context-capturing Features—Hagenau et al. (2013),
–	 Crowd-based Feature Selection (CrowdFS)—Pintas et al. (2017).
–	 Discriminative Personal Purity (DPP)—Ortega-Mendoza et al. (2018).
–	 Latent Selection Augmented Naive Bayes (LSAN)—Feng et al. (2015a).
–	 Ontology—Qazi and Goudar (2018), Abdollahi et al. (2019).
–	 Semantic Measures—Ouhbi et al. (2016).
–	 Semantic Similarity—Zong et al. (2015).
–	 Word Embedding—Su et al. (2014), Zhu et al. (2017).
–	 Topic Guessing—Méndez et al. (2019).

We categorize two studies (Su et al. 2014, Zhu et al. 2017) that use Word Embeddings as a 
semantic approach because it was used to map the meaning of the words. Both studies used 
Word Embedding to map the similarity of the words and perform the similarity expansion 
in FS. The aim of similarity expansion is to expand the set of selected features based on 
similarity of words.

Rule-Based Approaches Among the studies included, only four use rule-based approach. 
Agnihotri et  al. (2016) propose a novel hybrid FS called Correlative Association Score 
(CAS) of terms. The CAS utilizes the concept of the Apriori algorithm to select the most 
informative terms. Sheydaei et al. (2015) proposed the Bit-priori Association Classification 
Algorithm (BACA), which combines the rule approach with a semantic approach. More 
recently, Wang and Hong (2019) proposes the Hebb Rule Based Feature Selection (HRFS) 
that assumes that terms and classes are neurons and select terms under the assumption 
that a term is discriminative if it keeps “exciting” the corresponding classes. Finally, 
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Sundararajan et al. (2020) proposes the multi-rule based ensemble FS model for sarcasm 
classification.

Linguistics Approaches In our review, we found three FS studies based mainly on the 
linguists’ approach. The proposed methods use lexical or grammar information to measure 
the relevance of the features (Mladenović et al. 2016, Qin et al. 2016, Jiang and Yu 2015).

5.3 � Categorization by target

Document classifiers may have different types of targets. Binary classifiers estimate one 
class for each new document within two possible categories  (usually positive and nega-
tive categories). Multiclass classifiers assign each new document to one class from a list 
including three or more possible classes. In multi-label classification, a classifier attempts 
to assign multiple labels to each document, whereas a hierarchical classifier maps text onto 
a defined hierarchy of output categories (Mirończuk and Protasiewicz 2018). Hierarchical 
and ordinal classifiers can be viewed as specific types of multiclass classifiers in which 
classes have a relationship with each other. In the hierarchical classification, the classes are 
organized into hierarchical levels, whereas in ordinal classification, the classes are organ-
ized in order or sequence.

During our review, we identified that each FS method is specifically designed to work 
with a specific target type. The following paragraphs present the main proposed methods of 
each target type.

Binary Text Classification Among the 175 included studies, 43 studies (24.57%) focus 
on FS for binary text classification. We found that 20 studies  (46.51% of 43) are related 
to the sentiment analysis and 6 studies (13.95% of 43) are related to spam detection. Both 
sentiment analysis and spam detection are usually handled as a binary classification prob-
lem. Table 5 presents the FS studies that were evaluated with binary datasets grouped by 
problem domain.

Multiclass Text Classification Most of studies about FS for text classification  (118 
of 175 included studies, 67.43%) focus on multiclass. Among these, 82 studies  (69.49% 
of 118 studies) evaluate the method proposed using the main news classification bench-
marks (datasets Reuters-21578, 20Newsgroup, Fudan, Sogou News). FS methods for mul-
ticlass or multi-label text classification need to address the globalization issue described 

Table 5   FS studies using binary target text datasets

Problem domain Studies

Sentiment Analysis Bagheri et al. (2013), Chen et al. (2013), Ren et al. (2013), Kun and Lei (2014), Su 
et al. (2014), Liang et al. (2015), Ong et al. (2015), Mladenović et al. (2016), Parlar 
et al. (2016), Shang et al. (2016), Onan and Korukoglu (2017), Shahid et al. (2017), 
Tripathy et al. (2017), Yousefpour et al. (2017), Kumar and Harish (2018), Somantri 
et al. (2019), Gökalp et al. (2020), Islam et al. (2019)

Spam Detection Arani and Mozaffari (2013), Wang et al. (2014c), Liu et al. (2016)v Rajamohana et al. 
(2017), Méndez et al. (2019)

Other Domains Hagenau et al. (2013), Shen et al. (2013), Wang et al. (2013), Badawi and Altincay 
(2014), Zhang et al. (2014a, 2014b), Lin et al. (2016), Ouhbi et al. (2016), Sabbah 
et al. (2016), Sarhan et al. (2016), Malji and Sakhare (2017), Rehman et al. (2017), 
Zhuang et al. (2017); Manochandar and Punniyamoorthy (2018); Rehman et al. 
(2018); Abdollahi et al. (2019); Vychegzhanin et al. (2019)
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in Sect. 4.3. In our review, we found studies for each implementation options described in 
Sect. 4.3: 

1.	 Implement a local FS method for each class/label and subsequently perform globaliza-
tion (Shang et al. 2013; Xu and Jiang 2015).

2.	 Implement a global FS method designed to deal with globalization problems (Lee and 
Kim 2013; Agnihotri et al. 2017b).

3.	 Adapt/Use a class/label specific classification scheme (Tang et al. 2016a, c).

Multi-Label Text ClassificationAmong the included studies, only nine studies focused on 
FS for multi-label text classification:

–	 Based on supervised topic modeling for Boosting-based multi-label text categoriza-
tion—Al-Salemi et al. (2017).

–	 Using Diversified Greedy Backward-Forward Search (DGBFS)—Ruta (2014).
–	 Using Ensemble Embedded Feature Selection (EEFS)—Guo et  al. (2017) and Guo 

et al. (2019).
–	 Using label Pairwise Comparison Transformation (PCT) method, which converts each 

original multi-label sample into multiple samples with same feature vectors and differ-
ent label vectors —Xu and Xu (2017).

–	 Using Multivariate Mutual Information (MMI)—Lee and Kim (2013).
–	 Using two-stage term reduction strategy based on IG theory and GPSO search—Karab-

ulut (2013).
–	 Using Fuzzy Rough Feature Selection (FRFS)—Zuo et al. (2018).
–	 Using Memetic Feature Selection based on Label Frequency Difference (MFSLFD)—

Lee et al. (2019).

As detailed in Sect. 3, our SLR protocol focused studies that explicitly state the applica-
tion of text classification in the title or abstract. However, some works outside this scope 
are also interesting and were experimentally tested on text data. A relevant example is the 
mutual Information-based multi-label FS method using interaction information  (Lee and 
Kim 2015).

Hierarchical Text ClassificationAmong the included studies, only three of them focused 
on FS for hierarchical text classification. Naik and Rangwala (2016) investigate various 
filter-based FS methods for dimensionality reduction to solve the large-scale hierarchical 
classification problem. Lifang et al. (2017) propose a hierarchical FS method using Kull-
back-Leibler divergence to measure the correlation between the class and subclasses, and 
using MI to calculate the correlation between each feature and subclass. Song et al. (2016) 
propose a FS method based on category distinction and feature position information for 
Chinese text classification. This is the only included study in our review that deals with the 
issue of considering the position of words during the FS process.

Ordinal Text Classification Among the included studies, only two focused on FS for 
ordinal text classification. Baccianella et al. (2013) evaluate the use of micro-documents in 
ordinal classification. They logically break down each training document of length k into 
k training “micro-documents”. The purpose of the use of micro-documents was explained 
earlier in this section. Baccianella et  al. (2014) propose four novel FS metrics that have 
been specifically devised for ordinal classification and test them on two datasets of product 
review data.
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5.4 � Categorization by labeled data dependence

According to the Encyclopedia of Machine Learning (Sammut and Webb 2010), super-
vised learning refers to any machine learning process that learns a function from an 
input type to an output type using data comprising examples that have both input and 
output values. The same Encyclopedia, define unsupervised learning to any machine 
learning process that seeks to learn structure in the absence of either an identified out-
put and semi-supervised learning to any machine learning process that uses both labeled 
and unlabeled data to perform an otherwise supervised learning or unsupervised learn-
ing task. Labeled data are data for which each object has an identified target value, the 
label (Sammut and Webb 2010).

Like learning methods  (such as classification and regression), FS methods can also 
be classified into supervised, unsupervised, and semi-supervised according to their 
dependence on labeled data. FS methods that need labeled data can be classified as 
supervised method. On the other hand, FS methods that don’t need labeled data can 
be classified as an unsupervised FS methods. Finally, FS methods that work with both 
labeled and unlabeled data are classified as semi-supervised.

Supervised Methods Most FS studies for text classification propose supervised methods. 
Considering the 175 studies included in this review, 166  (94.86% of total) are based on 
supervised methods. Supervised methods are mostly methods that measure the relevance 
of features alone or in subsets of features based on a labeled training set. Table 6 present all 
included studies grouped by labeled data dependence and year of publication.

Unsupervised Methods Considering the 175 studies included in this review, only 
four (2.29% of total) are based on unsupervised methods. In these works, three different 
unsupervised techniques were used:

–	 Term Frequency-Inverse Document Frequency (TF-IDF) and Glasgow expressions—
Manochandar and Punniyamoorthy (2018) propose two modifications to the tradi-
tional TFIDF and Glasgow expressions using graphical representations to reduce the 
size of the feature set.

–	 Word Co-occurrence Matrix—Wang et al. (2016) propose an unsupervised FS algo-
rithm through Random Projection and Gram-Schmidt Orthogonalization (RP-GSO) 
from the word co-occurrence matrix.

–	 Word Embedding—Rui et  al. (2016) propose an unsupervised FS method that uti-
lizes Word Embedding to find groups of words with similar semantic meaning. Word 
Embedding maps the words into vectors and remains the semantic relationships 
between words. After mapping the similar semantic groups, the method maintains 
the most representative word on behalf of the words with similar semantic mean-
ing. Lampos et  al. (2017) propose an unsupervised FS method that uses Neural 
Word Embeddings, trained on social media content from Twitter, to determine how 
strongly textual features are semantically linked to an underlying health concept.

Semi-Supervised MethodsSemi-supervised learning uses both labeled and unlabeled 
data to perform an otherwise supervised learning or unsupervised learning task (Sam-
mut and Webb 2010). Considering the 175 studies included in this review, only 
five (2.86% of total) studies are based on semi-supervised methods:

–	 Helmholtz Principle—Tutkan et al. (2016).
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–	 Information Theory—Wang et al. (2017b).
–	 Positive and Unlabeled Learning—Zhang et al. (2014b), Han et al. (2016).
–	 Pseudo Labels—Ren et al. (2013).

6 � Experiment settings analysis

The studies included in this review use different combinations of experiment settings, such 
as different datasets, classification algorithms, and performance metrics. Due to a large 
number of studies and the consequently large amount of experiment’s settings used, define 
the ideal setting for a new experiment can be very challenging.

The aim of this section is mapping and summarizing the settings of the experiments that 
are being used to analyze and compare FS methods for text categorization (Research Ques-
tion 3). We focus on analyzing the following settings:

–	 What text representation are being used? (Sect. 6.1)
–	 What public datasets, language of text corpora in datasets, and dataset domains are 

being used to evaluate the methods? (Sect. 6.2)
–	 What classifier algorithms are being used to evaluate the effectiveness of FS methods? 

(Section 6.3)
–	 Which validation settings are the most used? (Sect. 6.4)

We aim to help the design of new researches by providing a summary of which experiment 
settings are being used. Additionally, we have identified which settings are desirable and 
are underutilized.

6.1 � Text representation used in experiments

Textual data can be represented in different formats for text classification. In Sect. 2, we 
present the widely used N-gram and Word Embedding representation models. Considering 
the works included in this review, Table 7 shows that 88.57% of the methods were evalu-
ated using exclusively Bag of Words (BoW) (uni-gram). Among the remaining works, no 
other mode of representation was found to be prevalent. It is interesting to note that eight 
studies used the combination of different representations, two of which combining BoW 
and Word Embedding.

6.2 � Datasets used in experiments

The primary way to evaluate the effectiveness/efficiency of a FS method is training and 
measuring the performance of a classifier using the FS method. In this section, we indicate 
which public datasets are most commonly used in FS studies for text classification. We also 
map the most frequently used languages and domains.

Public Datasets Most of the papers included in this review used public datasets to 
evaluate the proposed methods. Few studies have used private or specifically collected 
datasets. The use of public datasets is recommended because it facilitates the compari-
son of methods. Table 8 presents the most used public datasets. As our review mapped 
a considerable number of studies and each one can use several different datasets, a list 
of all datasets would be very long and would mostly include datasets that were used by 
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a single study. For this reason, we focus on mapping and presenting in Table 8 only the 
datasets that are public and that were used by at least two studies mapped in our review.

Language of Text Corpora in Datasets The majority of the papers included in this 
review (72.57%) used only English text corpora to evaluated their FS methods. The sec-
ond most used language is Chinese  (26 studies). The third language is Arabic  (seven 
studies). Only four studies perform experiments using two different languages (English 
and Chinese). Wang and Hong (2019) were the only ones who used three different data-
sets languages (English, Turkish and Kurdish Sorani) in the same study. Table  9 pre-
sents the languages with at least two studies utilizing that language in their datasets.

The following languages were considered by only one study: Serbian  (Mladenović 
et  al. 2016), Hinglish  (Ravi and Ravi 2016), Indian  (Trivedi and Tripathi 2017), 
Tibetan  (Jiang and Yu 2015), Vietnamese  (Hai et  al. 2015), Japanese  (Fukumoto and 
Suzuki 2015), Russian  (Vychegzhanin et  al. 2019), Idonesian  (Somantri et  al. 2019), 
Italian (Ferilli et al. 2015), and Malay (Alshalabi et al. 2013).

Table 7   Text representation 
models to evaluate FS methods

Representation Number of 
studies

Example references

Bag of Words (BoW)
(Uni-gram)

155  Guru et al. (2018)
Uysal (2016)
Rehman et al. (2018)

BoW (Uni-gram) +
Part of Speech (POS)

2  Jiang and Yu (2015)
Rasool et al. (2020)

BoW (Uni-gram) +
Termset

1 Badawi and Altincay (2014)

BoW (Uni-gram) +
Word Embeddings

2  Lampos et al. (2017)
Zhu et al. (2017)

N-gram
(N > 1)

1 Agnihotri et al. (2016)

N-gram +
Part of Speech (POS)

1 Zainuddin et al. (2018)

POS +
Chunk based Features

1 Vani and Gupta (2017)

POS + Lexicon +
Word Embedings

1 Su et al. (2014)

POS-Pattern (3-gram) 1 Yousefpour et al. (2017)
Word Embeddings 2  Tian et al. (2018)

Lan et al. (2020)
Bag of Discriminative
Words (BoDW)

1 Zhuang et al. (2017)

Dense word
co-occurrence matrix

1 Wang et al. (2016)

Meta-features 1 Canuto et al. (2018)
Context specific
features

5  Hagenau et al. (2013)
Tommasel (2016)
Li et al. (2016a)
Ekbal and Saha (2015)
Sundararajan et al. (2020)

Total 175 –
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6.3 � Classification algorithms used in experiments

The studies included in this review propose new or improved FS methods for text classifi-
cation. To evaluate the performance of the proposed method, the authors perform the clas-
sification task using one or more classification algorithms. The choice of the classification 
algorithms for the experiment directly impacts the classification result and, therefore, the 
evaluation of the proposed method. Table 10 and Fig. 7 present the most used classification 
algorithms in studies experiments.

The most used algorithms are NB and SVM because they are recognized as having good 
results in the task of classifying texts (Agnihotri et al. 2017b). Table 11 presents the distri-
bution of studies by the number of algorithms used.

6.4 � Validation settings used in experiments

When designing a new experiment, the scientists must clearly define the validation method 
and whether any statistical tests will be performed to refute or not their hypotheses. This 
section presents the main evaluation settings used in studies included in this review.

Table 8   Most commonly used public datasets to evaluate FS methods

Dataset Domain Language Studies Percentage 
(%)

Reuters-21578 News English 57 32.57
20NewsGroup News English 40 22.86
WebKB Web Content English 19 10.86
Oshumed Medical English 12 6.86
Fudan News/Web Content Chinese 8 4.57
TDT/TDT2 News English 8 4.57
TREC Open Domain Questions English 8 4.57
WAP Web Content English 7 4.00
Sogou News Chinese 6 3.43
Sector Web Content English 4 2.29
UCI Datasets Several domains English 4 2.29
Enron Email (Spam) English 3 1.71
k1a/k1b Web Content English 3 1.71
RCV1 News English 2 1.14

Table 9   Most used language 
of text corpora in datasets to 
evaluate FS methods

Language Studies Percentage 
(%)

English 127 72.57
Chinese 26 14.86
Arabic 7 4.00
Persian 2 1.14
Turkish 2 1.14
English and Chinese 4 2.29



	 J. T. Pintas et al.

1 3

Validation Method To evaluate the proposed method, classification algorithms need to 
be trained and tested using different datasets. This is usually done by:

–	 Performing k-fold cross-validation. In cross-validation, the data is partitioned into k 
subsets, called folds. The learning algorithm is then applied k times, each time one dif-
ferent fold is selected as the test set, and the remaining are used as the training set (Sam-
mut and Webb 2010).

Table 10   Classifiers that are 
most often used to evaluate FS 
methods

Algorithm Studies Percentage 
(%)

Support Vector Machines (SVM) 103 58.86
Naive Bayes (NB) 99 56.57
k-Nearest Neighbors (KNN) 45 25.71
Decision Tree (DT) 22 12.57
Random Forest (RF) 11 6.29
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Fig. 7   Classifiers that have been most often used to evaluate FS methods over the years. The gray box indi-
cates that data collected for 2020 may be preliminary since this review was updated in October 2020

Table 11   Number of classifiers 
used to evaluate FS methods

Number of tested classifiers Studies Percentage 
(%)

1 classifier 89 50.86
2 classifiers 43 24.57
3 classifiers 21 12.00
4 classifiers 15 8.57
5 or more classifiers 7 4.00
Total 175 100
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–	 Splitting the dataset into two different sets  (training and test sets). Some studies use 
the standard split between training and testing available in some public datasets. Other 
studies define their criteria for this division. The most common is the division based on 
predefined percentages. However, some studies perform division based on other crite-
ria, such as time division or varying the size of each set within a predefined range.

Approximately half (44.00%) of the studies covered in this review were cross-validated 
and the other half (43.43%) used different sets of training and testing. Table 12 and Fig. 8 
present the validation methods used.

Statistical Significance Test The machine learning community has become increasingly 
aware of the need for statistical validation of the published results (Demšar 2006). Studies 
covered in this survey usually evaluate the efficacy of the proposed methods by compar-
ing the proposed solution to other FS methods. The purpose of the comparison is to verify 
whether the use of the proposed method increases the accuracy/precision/coverage of the 
classification activity in contrast to the other FS methods. Although practically all studies 
performed comparisons to demonstrate an improvement in classification performance, we 
identified that only 29.71% of them used some statistical method to confirm the statistical 
significance of the results. Table 13 shows which statistical methods have been used for 
this purpose.

Table 12   Validation methods 
used in experiments

Validation method Studies Percentage 
(%)

10-Fold Cross-validation 55 31.43
5-Fold Cross-validation 15 8.57
4-Fold Cross-validation 2 1.14
3-Fold Cross-validation 4 2.29
Random Cross-validation 1 0.57
40% Train + 60% Test 1 0.57
50% Train + 50% Test 13 7.43
60% Train + 40% Test 2 1.14
65% Train + 35% Test 1 0.57
67% Train + 33% Test 2 1.14
70% Train + 30% Test 12 6.86
75% Train + 25% Test 3 1.71
80% Train + 20% Test 3 1.71
90% Train + 10% Test 2 1.14
Dataset Original Split 33 18.86
Time Split 2 1.14
Variable Length Training Set 2 1.14
Not Described 22 12.57
Total 175 100
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7 � Research trends and discussion

Based on the analysis of the problems, methods, and experiment settings raised in this 
review, we found relevant research trends and discussion points. In this section, we detail 
these research trends presenting our view on each of them. Sections  7.1–  7.4 present 
research trends and discussions based on each perspective of categorization model that we 
propose in Sect. 5. Sections 7.5 to 7.7 present research trends and discussions about experi-
ment settings mapped in Sect. 6.
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Fig. 8   Most used validation methods used to evaluate FS methods over the years. The gray box indicates 
that data collected for 2020 may be preliminary since this review was updated in October 2020

Table 13   Statistical significance 
tests used in studies to reject or 
not the null hypothesis

Statistical test Studies Percent-
age(%)

Does not perform any statistical test 123 70.29
Student’s t-Test 31 17.71
Wilcoxon 7 4.00
Friedman-test 5 2.86
Nemenyi 3 1.71
Analysis of Variance (ANOVA) 2 1.14
Z-test 2 1.14
Chi-square 1 0.57
Cohen’s Kappa Statistic 1 0.57
Total 175 100
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7.1 � Filter has been the feature selection dominant strategy for text classification, 
but a change is coming

In Sect. 5.1, we identified that most studies about FS for text classification implement the 
filter strategy. We found three main reasons for this preference for filter strategy (Kumar 
2014; Tang et al. 2014):

–	 Simplicity—Filter-based methods usually have simpler design and development than 
wrapper and embedded methods.

–	 Classifier independence—In filter strategy, the result of FS is not biased by choice of 
classifiers.

–	 Computationally efficient—Filter-based methods are efficient and fast to compute. This 
advantage becomes even more important for text classification and other problems with 
high-dimensional data.

Despite filtering be the widely used strategy, we found that the percentage of studies 
based on filter strategy is decreasing, and the rate of studies based on wrapper strategy 
is increasing as shown in Table 14 and Fig. 9. The columns about Filter Strategy encom-
pass the Two-Step (Filter+Filter) studies and the columns about Wrapper Strategy cover 
Hybrid (Filter+Wrapper) studies. We believe that the percentage of studies using other 
strategies (wrapper, embedded, and hybrid) will continues to increase. We see the follow-
ing reasons for this increase:

–	 Large volume of published studies using the filter strategy – Since the volume of work 
using the filter strategy is large, we believe that the margin for improvement of results 
using this strategy is reduced. Therefore, we see that researchers tend to explore other 
strategies to pursue better results.

–	 Evolution of computing power and cost – The increase in processing power and com-
putational cost reduction facilitates research techniques that are more computationally 
intensive, such as wrappers methods. In other words, the computational efficiency of 
the filter strategy tends to become a less important factor, as the available computing 
power increases.

Table 14   Filter Strategies versus 
Wrapper strategies over the years

Year  Total of studies Filter strategies Wrapper strategies

Studies Percentage Studies Percentage 
(%)

2013 22 20 90.91 2 9.09
2014 16 13 81.25 2 12.50
2015 28 23 82.14 5 17.86
2016 33 22 66.67 7 21.21
2017 27 20 74.07 7 25.93
2018 22 16 72.73 5 22.73
2019 18 8 44.44 9 50.00
2020 9 4 44.44 5 55.56
Total 175 114 65.14 39 22.29
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7.2 � Metaheuristic approach is the trend

In Sect. 5.2, we identified that most studies about FS for text classification are mainly based 
on the statistic-based approach. However, we have analyzed the evolution of approaches 
used by grouping them by publication year (Fig. 10), and we noticed that the number of 
studies based on statistical approaches has been decreasing since 2016. On the same graph, 
we can see a gradual increase in the number of studies based on metaheuristics from 2015 
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Fig. 9   Percentage of Filter Strategies vs Percentage of Wrapper Strategies over the years. The gray box 
indicates that data collected for 2020 may be preliminary since this review was updated in October 2020
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Fig. 10   Amount of FS studies by approach over the years. The gray box indicates that data collected for 
2020 may be preliminary since this review was updated in October 2020
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to 2019. In 2016, 4 times more studies were published based on statistical approaches com-
pared to the number of studies based on metaheuristics in the same year. On the other 
hand, almost the same number of studies were published in each approach during 2019. If 
this trend continues, in the coming years, the predominant approach will be metaheuristic.

We believe that the increasing use of the metaheuristic approach is motivated by the 
same factors then the use of the wrapper strategy (discussed in Sect. 7.1). Similarly, a con-
siderable volume of studies is already available based on purely statistical approaches. 
In this way, researchers tend to have a smaller margin to achieve better results using the 
same approach. For this reason, they tend to explore more sophisticated approaches, such 
as metaheuristic techniques. The increasing use of the metaheuristic approach can also 
be directly related to the wrapper strategy’s greater use. Wrapper strategy is frequently 
employed to search for the best subset of features (as explained in Sect. 4). Since this sub-
set search is a hard problem (as explained in Sect. 4.2), metaheuristic search techniques are 
usually the solution adopted.

In addition to the two predominant approaches (statistical and metaheuristic), seman-
tic-based and machine learning-based approaches have also been used in a relevant num-
ber of studies. However, as it is possible to observe in the graph by year (Fig. 10), nei-
ther approach had a significant increase or decrease in the volume of studies per year. 
Approaches that have had few scattered studies over the years were not included in this 
chart. For example, we only found one study mainly based on the grammatical approach 
published in 2015 and three rule-based studies published in 2016, 2018, and 2019.

Considering the observations made in the previous paragraphs, we conclude that the 
metaheuristic approach tends to become prevalent in the coming years and the number of 
studies based mainly on a statistical approach tends to continue decreasing. We also believe 
that researchers will tend to combine two or more approaches in the same study to seek 
better results. This review focused on mapping the principal approach used in each study. 
A future work could be examining all secondary approaches used in each study and how 
they are being combined.

7.3 � Multiclass classifiers are still dominant

In Sect. 5.3, we identified that most studies were evaluated or designed to multiclass clas-
sifiers (67.43% of total) and binary classifiers (24.57% of total). To assess the possible 
change of this trend, we analyzed the distribution by year (Fig. 11). Disregarding the year 
2020 with preliminary data, it is not possible to identify any clear trend indicating a change 
in this distribution. Despite this, we believe that the number of multi-label studies will 
increase due to the popularity increase of multi-label classification  (Pereira et  al. 2018). 
However, we believe that this type of change tends to be gradual. The reason is that new FS 
studies tend to use the same types of classifiers and datasets that have been widely used in 
previous studies to facilitate comparison between studies.

7.4 � Supervised versus unsupervised feature selection methods

In Sect. 5.4, we identified that most studies are based on supervised techniques  (94.86% 
of total). To assess if there is any sign of growth in studies of unsupervised or semi-super-
vised techniques, we analyzed this distribution by year (Table  15). However, from this 
table, we can see that the largest number of unsupervised and semi-supervised studies were 
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concentrated in 2017 without progression in the following years. Thus, we believe that for 
the next few years, studies will probably remain focused on supervised techniques.

7.5 � Recent researches still over old public datasets: the need for new benchmarks

In Sect.  6.2, we present that the three most commonly used datasets in the studies are 
Reuters-21578, 20NewsGroup, and WebKb. Table 16 shows the year of creation and the 
size (number of documents) each of these datasets. Note that the three datasets are over 20 
years old and have a volume below 22,000 documents. These datasets can be considered 
old and small compared to other datasets like Reuters Corpus Volume I (RCV1). It is a 
dataset of over 800,000 manually categorized newswire stories made available by Reuters 
Ltd. for research purposes (Lewis et al. 2004). Although the RCV1 be a well-known bench-
mark for text classification with more than 2,000 studies citing the original paper (Lewis 
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Fig. 11   Amount of FS studies by type of classification over the years. The gray box indicates that data col-
lected for 2020 may be preliminary since this review was updated in October 2020

Table 15   Number of supervised, 
unsupervised and semi-
supervised studies over the years

Year Supervised Unsupervised Semi-
super-
vised

Percentage of 
supervised stud-
ies (%)

2013 21 0 1 95.45
2014 15 0 1 93.75
2015 28 0 0 100.00
2016 29 3 1 87.88
2017 25 1 1 92.59
2018 21 1 0 95.45
2019 18 0 0 100.00
2020 9 0 0 100.00
Total 166 5 4 94.86
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et al. 2004), none of the FS studies included in this review employed this dataset in their 
experiments.

We believe that most current studies still use those same datasets to facilitate a com-
parison of its results to previous studies. Thus, the use of these datasets tends to be 
preserved. One way to solve this problem is by using both classical as well as newer/
larger datasets in new studies. In this way, it will be possible to compare the results to 
previous works and evaluate the methods using larger benchmarks.

7.6 � The english language dominance

As explained in Sect. 6.2, most studies  (72.57%) evaluate techniques only in English 
datasets. We believe that one of the reasons for this focus on the English language is 
that about 54.40% of internet web pages is written in this language (W3Techs 2019). 
The remainder of the web pages is distributed over several other languages, such as 
Russian, German, and Spanish. However, each one of these languages owns less than 
7% of the webpages each (W3Techs 2019). Table 17 lists the 20 most widely used lan-
guages on the internet as of September 2019.

7.7 � Feature selection is already a mature field allowing statistical evaluations

As presented in Sect. 6.4, most studies (70.29%) do not perform statistical significance 
tests to reject or not the null hypothesis. Analyzing the data grouping by year (Table 18), 

Table 16   Age and size of most 
used datasets in experiments

Dataset Year of creation Number of 
documents

Reference

Reuters-21578 1987 21.578 Lewis (2019)
20NewsGroup 1995 20.000 Rennie (2019)
WebKB 1997 8.282 Webkb (2019)

Table 17   Historical trends in the usage of content languages for websites (W3Techs 2019)

Position Language Percentage (%) Position Language Percentage 
(%)

1 English 54.40 11 Polish 1.60
2 Russian 6.70 12 Chinese 1.60
3 German 5.30 13 Dutch, Flemish 1.10
4 Spanish 4.90 14 Korean 0.90
5 French 3.70 15 Czech 0.90
6 Japanese 3.40 16 Vietnamese 0.80
7 Portuguese 2.70 17 Arabic 0.70
8 Italian 2.10 18 Greek 0.60
9 Persian 2.10 19 Hungarian 0.50
10 Turkish 1.60 20 Swedish 0.50
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we noticed a progressive increase in the use of statistical tests. We believe that this 
increase indicates a maturing of the research area.

Analyzing publications in conferences and journals separately  (Table  19), we con-
cluded that the use of statistical tests is widespread in papers published in journals. 
From 90 articles published in conference, only 11 studies (12.22%) use statistical tests 
to support their findings. On the other hand, 41 of 85 studies  (48.24%) published in 
journals use statistical tests. In both cases, there is an increase in the use of statistical 
tests over the years. We believe that this demonstrates an increase in maturity in FS 
studies for text classification.

8 � Conclusion

The volume and diversity of studies included in this SLR show the complexity and 
importance of FS methods tailored for text classification problems. The categoriza-
tion scheme for FS methods that we propose in this article is an artifact that allows an 

Table 18   Statistical significance 
tests used in studies to reject or 
not the null hypothesis

Year Studies Using significance 
test

Percentage 
(%)

2013 22 3 13.64
2014 16 2 12.50
2015 28 8 28.57
2016 33 9 27.27
2017 27 7 25.93
2018 22 7 31.82
2019 18 10 55.56
2020 9 6 66.67
Total 175 52 29.71

Table 19   Statistical significance tests used in studies to reject or not the null hypothesis (Conference Stud-
ies versus Journal Studies)

 Year Conference studies Journal studies

Studies Using statistical 
tests

Percentage (%) Studies Using statistical 
tests

Percentage 
(%)

2013 14 0 0.00 8 3 37.50
2014 10 0 0.00 6 2 33.33
2015 18 3 16.67 10 5 50.00
2016 18 3 16.67 15 6 40.00
2017 13 2 15.38 14 5 35.71
2018 9 1 11.11 13 6 46.15
2019 8 2 25.00 10 8 80.00
2020 0 0 0.00 9 6 66.67
Total 90 11 12.22 85 41 48.24
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analysis of the current state of research and also the positioning of new studies. The pro-
posed categorization scheme enables grouping studies into different perspectives so that 
it is possible to observe the similarities and differences among the methods. Besides, 
another contribution of this SLR is a mapping of experiment settings. We hope that this 
mapping will help the design of new experiments by presenting what settings are most 
commonly used and what settings that are still unexplored. Finally, we presented a dis-
cussion about the main findings, and we pointed out the main trends and gaps identified 
by our SLR. The main future work that we have identified is the development is an open 
platform for comparing and testing FS methods specific for text classification.

Appendix A. List of acronyms

ACC​	� Accuracy Measure
ACC2	� Balanced Accuracy Measure
ALOFT	� At Least One FeaTure
ANOVA	� Analysis of Variance
ACA​	� Bit-priori Association Classification Algorithm
BBHA	� Binary Black Hole Algorithm
BFSM	� Blended Feature Selection Method
BGSA	� Binary Gravitational Search Algorithm
BMI	� Balanced Mutual Information
BoDW	� Bag of Discriminative Words
BoW	� Bag of Words
BPSO	� Binary Particle Swarm Optimization
CAS	� Correlative Association Score
CDM	� Class Discriminating Measure
CHI	� Chi-square
CMFS	� Comprehensively Measure Feature Selection
CNN	� Convolutional Neural Network
CrowdFS	� Crowd-based Feature Selection
CSO	� Cat Swarm Optimization
DBN	� Deep Belief Network
DF	� Document Frequency
DFS	� Discriminative Features Selection
DFS 	� Distinguishing Feature Selector
DGBFS	� Diversified Greedy Backward-Forward Search
DPP	� Discriminative Personal Purity
DT	� Decision Tree
EEFS	� Ensemble Embedded Feature Selection
FRFS	� Fuzzy Rough Feature Selection
FS	� Feature Selection
GAWA​	� Genetic Algorithm and Wrapper Approaches
GFSS	� Global Filter-based Feature Selection Scheme
GI	� Gini Index
GPSO	� Geometric Particle Swarm Optimization
HAN	� Hierarchical Attention Network
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HRFS	� Hebb Rule Based Feature Selection
IDF	� Inverse Document Frequency
IG	� Information Gain
IPSO	� Improved Particle Swarm Optimization
ISCA	� Improved Sine Cosine Algorithm
KNN	� k-Nearest Neighbors
LDA	� Latent Dirichlet Allocation
LSAN	� Latent Selection Augmented Naive Bayes
MBF	� Markov Blanket Filter
MFS	� Meta Feature Selection
MFSLFD	� Memetic Feature Selection based on Label Frequency Difference
MI	� Mutual Information
MMI	� Multivariate Mutual Information
MMR	� Max-Min Ratio
MOANOFS	� Multi-Objective Automated Negotiation based Online Feature Selection
MORDC	� Multi-Objective Relative Discriminative Criterion
MRDC	� Multivariate Relative Discrimination Criterion
NB	� Naive Bayes
NDM	� Normalized Difference Measure
OR	� Odds Ratio
OS-FS	� Optimized Swarm Search-based Feature Selection
PCT	� Pairwise Comparison Transformation
POS	� Part of Speech
POSFilter	� Part of Speech Filter
PSO	� Particle Swarm Optimization
RCV1	� Reuters Corpus Volume I
RDC	� Relative Discrimination Criterion
RF	� Random Forest
RFE	� Recursive Feature Elimination
RP-GSO	� Random Projection and Gram-Schmidt Orthogonalization
SAIG	� Sparsity Adjusted Information Gain
SBATFS	� Spark BAT Feature Selection
SIGCHI	� Square of Information Gain and Chi-square
SLR	� Systematic Literature Review
SMOTE	� Synthetic Minority Oversampling Technique
SVM	� Support Vector Machines
SVM-RFE	� Support Vector Machine-Recursive Feature Elimination
SWA	� Small World Algorithm
t-Test	� Student’s t-Test
TF	� Term Frequency
TF-IDF	� Term Frequency-Inverse Document Frequency
WFSAIG	� Wrapper Feature Selection Algorithm based on Iterated Greedy
WI-OMFS	� Wolf Intelligence Based Optimization of Multi-Dimensional Feature Selec-

tion Approach
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